历史上著名的悖论
NO.1
说谎者悖论(1iar paradox or Epimenides’ paradox)
最古老的语义悖论。公元前6世纪古希腊哲学家伊壁孟德
所创的四个悖论之一。是关于“我正在撒谎”的悖论。具体为:如果他的确正在撒谎,那么这句话是真的,所以伊壁孟德不在撤谎,如果他不在撒谎,那么这句话是假的,因而伊壁孟德正在撒谎。
NO.2
伊勒克特拉悖论(Eletra paradox) 逻辑史上最早的内涵悖论。由古希腊斯多亚学派提出。它的基本内容是:伊勒克特拉有位哥哥奥列斯特回家了.尽管伊勒支持拉知道奥列斯特是她的哥哥.但她并不认识站在她面前的这个男人。
写成一个推理.即:
伊勒克持拉不知道站在她面前的这个人是她的哥哥。
伊勒克持拉知道奥列期特是她的哥哥。
站在她面前的人是奥列期特。
所以,伊勒克持拉既知道并且又不知道这个人是她的 哥哥。
NO.3
M:著名的理发师悖论是伯特纳德·罗素提出的。一个理发师的招牌上写着:
告示:城里所有不自己刮脸的男人都由我给他们刮脸,我也只给这些人刮脸。
M:谁给这位理发师刮脸呢?
M:如果他自己刮脸,那他就属于自己刮脸的那类人。但是,他的招牌说明他不给这类人刮脸,因此他不能自己来刮。
M:如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了!
NO.4
唐·吉诃德悖论
M:小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。
问,你来这里做什么?
M:如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。
M:一天,有个旅游者回答——
旅游者:我来这里是要被绞死。
M:这时,卫兵也和鳄鱼一样慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。
悖论一览
1. 理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发?
如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。
2. 芝诺悖论——阿基里斯与乌龟:公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。假定阿基里斯能够跑得比乌龟快10倍。比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。
3. 说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。”
如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。
所以怎样也难以自圆其说,这就是著名的说谎者悖论。
公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是真的。”同上,这又是难以自圆其说!
说谎者悖论至今仍困扰着数学家和逻辑学家。说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对?用‘是’或‘不是’来回答。”
又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。
4. 跟无限相关的悖论:
{1,2,3,4,5,…}是自然数集:
{1,4,9,16,25,…}是自然数平方的数集。
这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗?
5. 伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么?
6. 预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。”
你能说出为什么这场考试无法进行吗?
7. 电梯悖论:在一幢摩天大楼里,有一架电梯是由电脑控制运行的,它每层楼都停,且停留的时间都相同。然而,办公室靠近顶层的王先生说:“每当我要下楼的时候,都要等很久。停下的电梯总是要上楼,很少有下楼的。真奇怪!”李小姐对电梯也很不满意,她在接近底层的办公室上班,每天中午都要到顶楼的餐厅吃饭。她说:“不论我什么时候要上楼,停下来的电梯总是要下楼,很少有上楼的。真让人烦死了!”
这究竟是怎么回事?电梯明明在每层停留的时间都相同,可为什么会让接近顶楼和底层的人等得不耐烦?
8. 硬币悖论:两枚硬币平放在一起,顶上的硬币绕下方的硬币转动半圈,结果硬币中图案的位置与开始时一样;然而,按常理,绕过圆周半圈的硬币的图案应是朝下的才对!你能解释为什么吗?
罗素悖论(理发师悖论)让人们发现了数学这座辉煌大厦的基础部分存在的一条巨大的裂缝。于是,数学家们开始探索数学结论在什么情况下才具有真理性,数学推理在什么情况下才是有效的……,从而产生了一门新的数学分支——数学基础论。
9. 谷堆悖论:显然,1粒谷子不是堆;
如果1粒谷子不是堆,那么2粒谷子也不是堆;
如果2粒谷子不是堆,那么3粒谷子也不是堆;
……
如果99999粒谷子不是堆,那么100000粒谷子也不是堆;
……
10. 宝塔悖论:如果从一砖塔中抽取一块砖,它不会塌;抽两块砖,它也不会塌;……抽第N块砖时,塔塌了。现在换一个地方开始抽砖,同第一次不一样的是,抽第M块砖是,塔塌了。再换一个地方,塔塌时少了L块砖。以此类推,每换一个地方,塔塌时少的砖块数都不尽相同。那么到底抽多少块砖塔才会塌呢?因此,1000000粒谷子不是堆。
欢迎光临
空网论坛 (http://bbs.kongweb.net/)
作者:
四月的柳絮
时间:
2007-9-8 06:40